

Faculty of: Sciences & Life Sciences Course: Bachelor of Science (Physics) Semester: I Subject Code: MAE201-1C Subject Name: Basic Mathematics

	Teaching hours/ Week Evaluation Scheme/ Semester																
Sr	Category	Subjec	Subject Name				Credi	Credi		Theory			1	Futorial /	Practio	cal	Total
No	Category	t Code	Subject Name	Th	Tu	Pr	hours	t Points	Co	ntinuous and mprehensive Evaluation	E	Semester xams	Asse	ssment	Ex	emester ams	
									Ma rks	Marks	Mar ks	Duration	Mark s	Duration	Mark s	Duratio n	
3	MINOR	MAE2 01-1C	Basic Mathematics	3	-	2	5	4	10 10 05	Assignment MCQ Attendance	50	2	25	1	-	-	100

Course Objective :

The main objectives of this course are

- The definitions of matrix and types of matrices.
- Algebra of matrices.
- Methods to solve system of linear equations.
- Eigen value and Eigen vectors of matrices.
- The basics of the Calculus: Limits, Derivatives, Geometry.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT			
UNII				
	Introduction to Determinants and Matrices, different types of Matrices, theorems on			
	matrices, elementary operations on matrices, Row Echelon & Reduced Row Echelon			
	form of a Matrix, Solution of system of linear equations, solving system of linear			
Ι	equations simultaneously, Inverse of Matrix, Rank of Matrix, Matrix inversion using	15		
	RRE form. Characteristic equation of a matrix and Cayley-Hamilton theorem and its			
	use in finding inverse of matrix, Eigen value and Eigen vector of square matrices,			
	eigenvalue of special type of matrices, Diagonalization of matrix.			
	Complex numbers, Polar form of complex number. De'Moivre's theorem, nth roots of			
Π	a complex number, Fundamental theorem of algebra (statement only), Multiple roots	15		
	and test for multiplicity.			

III	Review of Limit, Continuity, Differentiability, Sandwich Theorem. Indeterminate forms: $\frac{0}{0}, \frac{\infty}{\infty}, o \times \infty, \infty - \infty, 0^0, \infty^0, 1^\infty$, Successive derivative, Higher order derivatives, n th derivatives of standard form. Leibnitz's theorem and its applications. Roll's Mean Value Theorem, Lagrange's Mean Value Theorem, Cauchy's Mean Value Theorem and problems related to it. Taylor's Theorem (Without Proof), Maclaurin's Theorem (Without Proof), Taylor's and Maclaurin's infinite series expansions, expansions of e^x , sin sin x, cos cos x, $(1 + x)^n$, log log $(1 + x)$ under proper conditions.	15
-----	--	----

Course Outline for Practical

SR. NO	COURSE CONTENT	Lab Hours			
1	RE and RRE form and rank of a matrix, Inverse of a matrix				
2	Problems based on eigen values and eigen vectors and Diagonalization				
3	Cayley- Hamilton's Theorem and its applications.				
4	Descarte's rule of sign, Relation between roots and coefficients.				
5	Solution of cubic equations (Cardan's method), Solution of biquadratic equations (Ferarri's method)				
6	Algebra of Complex numbers, De'Moivre's theorem.				
7	L' Hospital's rule and exercises				
8	Successive differentiation and Leibnitz's theorem				

TEACHING METHODOLOGY:

Conventional method (classroom blackboard teaching) ICT Techniques Teaching through the classroom Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)

LEARNING OUTCOME:

After the successful completion of the course, students will be able to

- Solve systems of linear equations. ٠
- Manipulate matrix algebra and determinants. •
- Evaluate Eigen values and Eigen vectors. •
- Understand the concepts of complex numbers and some complex functions. •

Arrangement of	lectures duration	on and practical	l session as per o	defined credit n	umbers:		
Units	Units Lecture Duration		Calcul	ation of	Total	Credit	
	(In Hrs.)		Cre	edits	Lecture	Calculatio	
			(In Nu	mbers)	Duration		
	Theory	Dreatical	TI		Theory+	Theory+	
	Theory	Practical	Theory	Practical	Practical	Practical	
Unit – 1	15 15	Fractical	Ineory	Practical	Practical	•	
Unit – 1 Unit – 2	15 15	30	3	1	Practical 45 + 30	•	

DN

TOTAL	45	30	3	1	75	4

Evaluation:

Theory Marks	Practical Marks	Total Marks
75	25	100

REFERENCE BOOKS:

- 1. Advanced Engineering Mathematics', E. Kreyszig, New Age International Publishing Co.
- 2. 'Complex Variables and Applications', R. V. Churchill, J. W. Brown, McGraw-Hill Book Co.
- 3. Elementary Linear Algebra', Howard Anton and Chris Rorres, Wiley Pub.
- 4. A Textbook of Matrices', Shanti Narayan and P. K. Mittal, S. Chand and Co. New Delhi.
- 5. 'Higher Engineering Mathematics, Thirty-fifth edition', B. S. Grewal, Khanna Publication.
- 6. Differential Calculus', Shanti Narayan and P. K. Mittal, S. Chand and Co. New Delhi.