C. U. SHAH UNIVERSITY, WADHWAN CITY.

Faculty of: Sciences \& Life Sciences

 Course: Bachelor of Science (Physics)Semester: I
Subject Code: MAE201-1C
Subject Name:Basic Mathematics

$\underset{\mathrm{No}}{\mathrm{Nr}}{ }^{2}$		Subjec t Code	Subject Name	$\begin{array}{\|c\|} \hline \text { Teaching } \\ \text { hours/ } \\ \text { Week } \end{array}$		$\begin{gathered} \text { Credi } \\ \text { t } \\ \text { hours } \end{gathered}$	$\begin{gathered} \text { Credi } \\ \text { t } \\ \text { Points } \end{gathered}$	Evaluation Scheme/ Semester								
				ThTu				Theory				Tutorial / Practical				Total
	Category				u Pr				tinuous and prehensive valuation	End	Semester xams		ernal ssment	End S	emester xams	
								$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Ma } \\ \text { rks } \end{array} \\ \hline \end{array}$	Marks	$\begin{array}{\|c} \hline \mathbf{M a r} \\ \text { ks } \end{array}$	Duration	$\begin{array}{\|c\|} \hline \text { Mark } \\ \mathrm{s} \end{array}$	Duration	Mark	Duratio \mathbf{n}	
3	MINOR	$\begin{aligned} & \text { MAE2 } \\ & 01-1 \mathrm{C} \end{aligned}$	Basic Mathematics	3 -	2	5	4	$\begin{aligned} & 10 \\ & 10 \\ & 05 \end{aligned}$	Assignment MCQ Attendance	50	2	25	1	-	-	100

Course Objective :

The main objectives of this course are

- The definitions of matrix and types of matrices.
- Algebra of matrices.
- Methods to solve system of linear equations.
- Eigen value and Eigen vectors of matrices.
- The basics of the Calculus: Limits, Derivatives, Geometry.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT	TEACHIN G HOURS
I	Introduction to Determinants and Matrices, different types of Matrices, theorems on matrices, elementary operations on matrices, Row Echelon \& Reduced Row Echelon form of a Matrix, Solution of system of linear equations, solving system of linear equations simultaneously, Inverse of Matrix, Rank of Matrix, Matrix inversion using RRE form. Characteristic equation of a matrix and Cayley-Hamilton theorem and its use in finding inverse of matrix, Eigen value and Eigen vector of square matrices, eigenvalue of special type of matrices, Diagonalization of matrix.	$\mathbf{1 5}$
II	Complex numbers, Polar form of complex number. De'Moivre's theorem, nth roots of a complex number, Fundamental theorem of algebra (statement only), Multiple roots and test for multiplicity.	$\mathbf{1 5}$

Review of Limit, Continuity, Differentiability, Sandwich Theorem. Indeterminate		
forms: $\frac{0}{0}, \frac{\infty}{\infty}, o \times \infty, \infty-\infty, 0^{0}, \infty^{0}, 1^{\infty}$, Successive derivative, Higher order derivatives,		
$n^{\text {th }}$ derivatives of standard form. Leibnitz's theorem and its applications.		
Roll's Mean Value Theorem, Lagrange's Mean Value Theorem, Cauchy's Mean	$\mathbf{1 5}$	
Value Theorem and problems related to it.Taylor's Theorem (Without Proof),		
Maclaurin's Theorem (Without Proof), Taylor's and Maclaurin's infinite series		
expansions, expansions of		
$e^{x}, \sin \sin x, \cos \cos x,(1+x)^{n}, \log \log (1+x)$	under proper conditions.	

Course Outline for Practical

SR. NO	COURSE CONTENT	Lab Hours
$\mathbf{1}$	RE and RRE form and rank of a matrix, Inverse of a matrix	
$\mathbf{2}$	Problems based on eigen values and eigen vectors and Diagonalization	
$\mathbf{3}$	Cayley- Hamilton's Theorem and its applications.	
$\mathbf{4}$	Descarte's rule of sign, Relation between roots and coefficients.	30
$\mathbf{5}$	Solution of cubic equations (Cardan's method), Solution of biquadratic equations (Ferarri's method)	
$\mathbf{6}$	Algebra of Complex numbers, De'Moivre's theorem.	
$\mathbf{7}$	L' Hospital's rule and exercises	
$\mathbf{8}$	Successive differentiation and Leibnitz's theorem	

TEACHING METHODOLOGY:

Conventional method (classroom blackboard teaching)
ICT Techniques
Teaching through the classroom
Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)

LEARNING OUTCOME:

After the successful completion of the course, students will be able to

- Solve systems of linear equations.
- Manipulate matrix algebra and determinants.
- Evaluate Eigen values and Eigen vectors.
- Understand the concepts of complex numbers and some complex functions.

Arrangement of lectures duration and practical session as per defined credit numbers:

Units	Lecture Duration (In Hrs.)		Calculation of Credits (In Numbers)			Credit Calculation
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical
Unit - 1	15	30	3	1	$45+30$	4
Unit - 2	15					
Unit - 3	15					

TOTAL	45	30	3	1	75	4

Evaluation:

Theory Marks	Practical Marks	Total Marks
75	25	$\mathbf{1 0 0}$

REFERENCE BOOKS:

1. Advanced Engineering Mathematics', E. Kreyszig, New Age International Publishing Co.
2. 'Complex Variables and Applications', R. V. Churchill, J. W. Brown, McGraw-Hill Book Co.
3. Elementary Linear Algebra', Howard Anton and Chris Rorres, Wiley Pub.
4. A Textbook of Matrices', Shanti Narayan and P. K. Mittal, S. Chand and Co. New Delhi.
5. 'Higher Engineering Mathematics, Thirty-fifth edition', B. S. Grewal, Khanna Publication.
6. Differential Calculus', Shanti Narayan and P. K. Mittal, S. Chand and Co. New Delhi.
